***	Roll No

HSSC-(P-I)-A/2024 (For All Sessions)

	Γ			
Paper Code	6	1	9	7

Marks: 20

Mathematics(Objective)

Group-I RWP-1-W Time: 30 Minutes

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

Four 4th roots of 625 are:

(A)
$$\pm 4, \pm 4i$$

(D)

(D)

(D)

(D)

Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are of the form:

$$(A) \qquad \frac{A}{x+1} + \frac{B}{x-1}$$

(B)
$$\frac{Ax}{x+1} + \frac{B}{x-1}$$

 $\pm 5, \pm 5i$

(C)
$$1 + \frac{A}{x+1} + \frac{B}{x-1}$$

$$(D) \qquad \frac{Ax+B}{x+1} + \frac{Cx+D}{x-1}$$

i

8!

5!

A. M between x - 3 and x + 5 is: 3.

$$(A)$$
 $x+1$

(B)
$$x-1$$

$$x - 3$$

$$x + 5$$

No term of a G. P can be: 4.

8.7.6 =5.

(A)
$$\frac{8!}{8}$$

$$\frac{8!}{7!}$$

$$\frac{8!}{6!}$$

 $4^n > 3^n + 4$ is true for integers:

$$4^{n} >$$

$$n \ge 2$$

$$n \ge 3$$

$$n \ge 4$$

$$n \ge 5$$

If $sin \theta < 0$ and $cos \theta > 0$, then terminal arm of θ lies in quadrant: 7.

(C)

8.
$$\frac{1-\cos\theta}{2} =$$

$$sin\theta$$

$$\sin^2\frac{6}{2}$$

$$\cos \theta$$

Range of y = tanx is:

$$(A) \qquad \frac{-\pi}{2} \le y \le \frac{\pi}{2}$$

(B)
$$-\infty < y < \infty$$

$$\frac{-n}{2} \le x \le \frac{n}{2}$$

$$S \qquad (C)$$

(D)
$$-\infty < x < \infty$$

а

π

 $\bar{2}$

11
$$\sin\left(\cos^{-1}\frac{\sqrt{3}}{2}\right)$$

(B)

$$\frac{\sqrt{3}}{2}$$

$$\frac{1}{\sqrt{3}}$$
 (D)

11.
$$Sin\left(cos^{-1}\frac{\sqrt{3}}{2}\right) =$$

$$\frac{\sqrt{3}}{2}$$

12. Reference Angle for
$$1 - 2 \sin x = 0$$
 is:

(C)

 $\forall Z \in C$, which one is true: 13.

$$z = -z$$

$$\frac{1}{z} = -z$$

A

$$\frac{\pi}{z} = z$$

z = -zA prime number can be factor of a square only if it occurs in it at least.

14.

15.

18.

If A and B are disjoint sets, then A -

$$B-A$$

Equivalence

0

The converse of $\sim p \rightarrow q$ is: 16.

Conjunction

$$p \rightarrow q$$

$$q \rightarrow p$$

17. (A)

 $(AB)^t =$

$$p \wedge q$$
 is called:

(C)

(D)
$$B^t A^t$$

(B) A^tB^t A square matrix A is anti-symmetric if: 19.

(B)

$$A^{t} = A$$

 A^tB

$$AB$$
 $\bar{A} = A$

(D)
$$\bar{A} = -A$$

(A)
$$A = 20$$
. $1 + \omega + \omega^2 = 4$

		/ /
Roll No	2	- 1
KOII 140	·	

HSSC-(P-I)-A/2024 (For All Sessions)

SECTION-I

Marks .

Time: 2:30 hours

Mathematics (Subjective)

(GROUP-I)

RWP-1-24

(8x2=16)

Write short answers of any eight parts from the following: 2.

- Define a complex number. Is 0 a complex number?
- Whether the set $\{0, -1\}$ is closed or not w.r.t addition and multiplication.
- Factorize: $3x^2 + 3y^2$ iii.
- Find multiplicative inverse of -3-5i
- Construct truth table of $\sim (p \rightarrow q) \rightarrow p$
- Define monoid. Vi.
- Find the matrix X if: $X\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$
- If A and B are square matrices of the same order, then explain why in general $(A+B)^2 \neq A^2 + 2AB + B^2$ viii.

ix. If
$$A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$$
, find $A(\bar{A})^t$

- Find four fourth roots of 81 X.
- Use the remainder theorem to find the remainder when $x^3 2x^2 + 3x + 3$ is divided by x 3Xi.
- If \propto , β are the roots of $3x^2-2x+4=0$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ XII.

(8x2=16)

- Write short answers of any eight parts from the following: 3.
- Define conditional equation. i.
- Resolve $\frac{x^2+15}{(x^4+2x+5)(x-1)}$ into partial fraction without finding constants.
- Find the first four terms of the sequence $a_n = \frac{n}{2n+1}$ iii.
- Determine whether -19 is a term of 17, 13, 9, ... iy.
- Find the 5th term of the G.P 3, 6, 12, V.
- Sum the series $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{13}$
- Prove from the first principle that ${}^nP_r=n$. ${}^{n-1}P_{r-1}$ VIV.
- Find the value of n when ${}^{n}C_{12} = {}^{n}C_{6}$ viii.
- Determine the probability of getting dots less than 5 when a die is rolled. ix.
- Prove that $n! > 2^n 1$ for n = 4, 5
- Calculate (2.02)⁴ by means of binomial theorem.
- Expand $(1 + 2x)^{-1}$ up to 4 terms. xii.

(9x2=18)

- Write short answers of any nine parts from the following:
- Write values of trigonometric functions for $\theta = \frac{-9}{2}\pi$.
- Prove that $t^2\theta \cos^2\theta = \cot^2\theta \cos^2\theta$.

RWP-1-24

iii. Prove that $sin(\theta + 270) = -cos\theta$.

iv. Prove that $sin2\theta = 2sin\theta \cos\theta$.

v. Express $sin12^{\circ}$ $sin46^{\circ}$ as sum or difference.

vi. Write domain and range of $\cos x$.

vii. Find period of $\sin \frac{x}{3}$.

viii. Draw the graph of tanx for $x \in (0, \pi)$

ix. Prove that $r = (s - b)tan\frac{\beta}{2}$.

x. Write any two half angle formulae.

xi. When angle between ground and sun is 30°, flag pole casts a shadow of 40m long. Find height of top of flag.

xii. Show that $cos(sin^{-1}x) = \sqrt{1-x^2}$.

xiii. Solve the equation $4 \cos^2 x - 3 = 0$

SECTION-II

Note: Attempt any three questions. Each question carries equal marks:

(10x3=30)

5.(a) If \propto and β are the roots of $x^2 - 3x + 5 = 0$, form the equation whose roots are $\frac{1-\alpha}{2}$ and $\frac{1-\beta}{2+\beta}$.

(b) Find the rank of m. rix $\begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & -6 & 5 & 1 \\ 3 & 5 & 4 & -3 \end{bmatrix}$

6. (a) Resolve $\frac{1}{(x+1)^2(x^2+2)}$ into partial fractions.

(b) Find six arithmetic means between 2 and 5.

7. (a) A die is thrown. Find the probability that the no. of dots on the top are prime numbers or odd numbers.

(b) If x is so small that its cube or higher powers can be neglected, show that $\sqrt{\frac{1-x}{1+x}} \approx 1 - x + \frac{1}{2}x^2$

8. (a) Solve the triangle ABC, given that $\propto = 35^{\circ} 17^{\circ} \beta = 45^{\circ} 13^{\circ}$, $b = 421^{\circ}$.

(b) Reduce $cos^4\theta$ to an expression involving only function of multiples of θ , raised to the first power.

9. (a) A circular wire of radius 6 cm is cut straightened and then bent so as to lie along the circumference of a hoop of radius 24 cm. Find the measure of the angle which it subtends at the center of the hoop.

(b) Prove that: $tan^{-1}\frac{1}{4} + tan^{-1}\frac{1}{5} = tan^{-1}\frac{9}{19}$

826-11-A

HSSC-(P-I)-A/2024 (For All Sessions)

Time: 30 Minutes

Mathematics(Objective)

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

Group-II

- A complex number 1 + i can also be expressed as:
 - $2(cos45^{\circ} + i sin45^{\circ})$
- $\sqrt{2}(\cos 45^{\circ} i \sin 45^{\circ})$ (B)

Imaginary

Contradiction

- $\sqrt{2}(\cos 45^{\circ} + i \sin 45^{\circ})$ (D) (C)
- $2(\cos 45^{\circ} i \sin 45^{\circ})$

Marks: 20

If Z is a complex number and $Z = \overline{Z}$ then Z must be:

Real

Infinite set

- (A)
- (B)
- (C)
- Rational
- Irrational

- The set $\{(a,b)\}$ is called: 3.
- (B)
- Singleton set
- **Empty set** (C)
- Set with two elements

- Drawing conclusion from premises believed to be true is called:
 - Proposition
- (B)
- (C)
- (D)

(D)

(D)

Deduction

- If p is a logical statement $p \land \sim p$ is always: 5.
 - Absurdity
- Contigency
- (C)
- (D)
- Conditional *

- If $A = [a \quad b \quad c]$, then order of A^t is:
- 3×1
- (C)
- 3×3

Induction

Tautology

- (D)
- 1×1

- If the matrix $\begin{bmatrix} \lambda & 1 \\ -2 & 1 \end{bmatrix}$ is singular then $\lambda =$

- (C)
- -2

- IF $4^{3x} = \frac{1}{2}$ then x is equal to: 8.
- (B)

- 6

- If ω is cube root of unity, then $\omega + \omega^2$
- - (x+2), value of B is:
- (C)
- (D)

(D)

2

5

- From the identity 5x + 4 = A(x 1)

11.

- Which of the term cannot be a term of G.P:

- (D)

- K is equal to:

- n(n+1)
- (C)
- (D)

- is equal to:

- (C)
- (D)
- $^{n-1}C_r$

- In expansion of $(a + b)^{16}$ middle term will be: 14.

- 12th

(D)

- 11th
- $\frac{9}{2}\pi$
- (C) (B)
- 8th
- (C)
- $\frac{1}{3}\pi$
- 9th (D)

(D)

16.

15.

18.

The angle $\frac{3\pi}{2} - \theta$ lies in quadrant:

Which of the following is **NOT** Quadrantal angle?

- (A)

4Δ

 π

 $\frac{-}{3}$ 827-11-A

(B)

(B)

II

 13π

- (C) (C)
- III
- (D)

 $\frac{1}{2}$

IV

[-2, 2]

Δ

 \bar{s}

The range of sinx is: 17.

- [-1, 1](A)
- (B) (B)
- $\frac{S}{\Delta}$

[-1, 0]

- (C)
- (D)

- $Cos\left(sin^{-1}\frac{1}{\sqrt{2}}\right)$ is equal to:
- (A)

(A)

- 1 (B) $\overline{2}$
- (C) (C)
- (D) π

If $sinx = \frac{1}{2}$, then reference angle is:

The radius of inscribed circle is:

- (A)

to be filled in by the candidate

HSSC-(P-I)-A/2024

(For All Sessions)

Time: 2:30 hours

(GROUP-II)

SECTION-I

Mathematics (Subjective)

Write short answers of any eight parts from the following:

(8x2=16)

Marks: 80

2.

Does the set $\{1, -1\}$ possess closure property w.r.t multiplication? Construct the multiplication table.

ii. If
$$\frac{a}{b} = \frac{c}{d}$$
, prove that $ad = bc$

iii. Factorize
$$a^2 + 4b^2$$

Simplify by expressing in the form a + bi: $(2 + \sqrt{-3})(3 + \sqrt{-3})$ į٧,

v. If
$$B = \{1, 2, 3\}$$
 then write down the power set of B

Determine whether the statement $p \rightarrow (q \rightarrow p)$ is a tautology or not. Vİ.

Under what conditions, the determinant of a square matrix A is zero. Write any two conditions. ۷ij.

viii. If
$$A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$$
 and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b .

Determine whether the matrix $A = \begin{bmatrix} 1 & 1+i \\ 1-i & 2 \end{bmatrix}$ is hermitian matrix or skew-hermitian matrix. iX.

x. Solve the equation:
$$x^{-2} - 10 = 3x^{-1}$$

Find four fourth roots of 16. Χİ.

Show that the roots of equation will be rational $px^2 - (p-q)x - q = 0$ XII.

Write short answers of any eight parts from the following: 3.

(8x2=16)

Define an identity with example. i.

Resolve into partial fraction $\frac{1}{x^2-1}$ ii.

The 7th and 10th terms of an H.P are $\frac{1}{3}$ and $\frac{5}{21}$ respectively, find its 14th term. $\stackrel{*}{\sim}$... iii.

Find the sum of first 15 terms of geometric sequence $1, \frac{1}{3}, \frac{1}{6}, \dots$ iv.

Insert two G.M's between 2 and 16. ٧.

How many terms of the series $-7 + (-5) + (-3) + \cdots$ amount to 65 ٧i.

A card in drawn from a deck of 52 playing cards. What is the probability that it is a diamond card or an ace? vii.

Find n, if ${}^nC_8 = {}^nC_{12}$ VIII.

How many different 4-digit numbers can be formed out of the digits 1, 2, 3, 4, 5, 6, when no digit is repeated?

Use mathematical induction to prove that $3+3.5+3.5^2+\cdots+3.5^n=\frac{3(5^{n+1}-1)}{4}$ for n=1,2

Calculate by means of binomial theorem (2.02)⁴

Expand upto 4 – terms $(1-x)^{1/2}$ χii.

Write short answers of any nine parts from the following:

(9x2=18)

Find r, when l = 56cm, $\theta = 45^{\circ}$

Verify that $sin2\theta = 2sin\theta cos\theta$ for $\theta = 45^{\circ}$ ii.

Write the fundamental law of trigonometry. iii.

RWP-2-24

- v. Express sin5x + sin7x as a product.
- vi. Define the period of trigonometric function.
- vii. Write down the domain and range of tangent function.
- viii. Find the period of $\sin \frac{x}{3}$
- ix. Solve the right triangle ABC, in which $\gamma = 90^{\circ}$, a = 3.28, b = 5.74.
- x. Define half angle formulas for tangent.
- xi. Define Hero's formula.
- xii. Find the value of $sin(tan^{-1}(-1))$
- xiii. Solve the equation sin2x = cosx where $x \in [0, 2\pi]$

SECTION-II

Note: Attempt any three questions. Each question carries equal marks:

(10x3=30)

5.(a) Show that
$$\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$$

- (b) Prove that $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ will have equal roots if $c^2 = a^2m^2 + b^2$; $a \neq 0, b \neq 0$
- 6. (a) Resolve into partial fractions $\frac{6x^3+5x^2-7}{2x^2-x-1}$
 - (b) The A. M between the two numbers is 5 and their positive G. M. is 4 find the numbers.
- 7. (a) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$.
 - (b) Find the coefficient of x^5 in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$
- 8. (a) Reduce $sin^4\theta$ to an expression involving only functions of multiples of θ raised to the first power.
 - (b) With usual notations, prove that $r = s \cdot \tan^{\alpha}/2 \cdot \tan^{\beta}/2 \cdot \tan^{\gamma}/2$
- 9. (a) If $cot\theta = \frac{5}{2}$, and θ is in quadrant i, find the value of $\frac{3sin\theta + 4cos\theta}{cos\theta sin\theta}$
 - (b) Prove that $cos^{-1}\frac{63}{65} + 2tan^{-1}\frac{1}{5} = sin^{-1}\frac{3}{5}$

828-11-A